DegUIL: Degree-aware Graph Neural Networks for Long-tailed User Identity Linkage

Meixiu Long, Siyuan Chen, Xin Du, and Jiahai Wang

Sun Yat-sen University, Guangzhou, China

Outline

- Background
- Problem & related work
- Challenge & insight
- Proposed model: DegUIL
- Experiments
- Conclusions

User identity linkage (UIL)

- Link identities belonging to the same natural person across distinct social networks
- > Application
 - A data fusion and mining task
 - Cross-platform recommendation, etc
- ➤ UIL Methods
 - Mainly structure-based methods, encoded by graph neural networks (GNNs)

www.yat-sen UNIVERSITY

whether social networks provide reliable and adequate information?

- An inherent structural gap exists among nodes
- The limited neighborhoods of tail nodes hinder the linkage performance
- Noise hidden in super head nodes exacerbates the quality of representation

- An inherent structural gap exists among nodes
- The limited neighborhoods of tail nodes hinder the linkage performance
- Noise hidden in super head nodes exacerbates the quality of representation

- An inherent structural gap exists among nodes
- The limited neighborhoods of tail nodes hinder the linkage performance
- Noise hidden in super head nodes exacerbates the quality of representation

- An inherent structural gap exists among nodes
- The limited neighborhoods of tail nodes hinder the linkage performance
- Noise hidden in super head nodes exacerbates the quality of representation

Related work

Degree-related UIL methods

- SEA [1], learning embeddings
- DAT [2], additional entity names

Other long-tailed problems

- Node degree long-tailed graphs [3][4]
- Recommendation.....

[1] 2019, WWW. Semi-supervised entity alignment via knowledge graph embedding with awareness of degree difference.[2] 2020, SIGIR. Degree-aware alignment for entities in tail.

[3] 2020, CIKM. Towards locality-aware meta-learning of tail node embeddings on networks.

[4] 2021, KDD. Tail-GNN: Tail-node graph neural networks.

Problems

Structural gap, limited neighborhoods, noise-filled graphs

≻ Goal

How can we effectively link identities for socially-inactive users in a noisy graph?

Challenges

- C1: Tail nodes have no additional information but few neighbors
- C2: How can noise be eliminated while preserving the intrinsic graph structure
- C3: Each node owns both a unique locality and a generality

≻ Key idea

Exploit the ideal neighborhood knowledge of head nodes to **correct structural bias** for meaningful aggregation in GNNs

First & Second Challenges

• Train two modules to enrich tail nodes and refine super head nodes in embeddings

Third Challenge

• Shared vectors across the graph, adapt to the local context of each node

DegUIL: overall framework

Our work

(a) Generate initial features

(b) correct observed neighborhood to be ideal

Aggregation $\mathbf{h}_{i}^{l+1} = \operatorname{Agg}\left(\mathbf{h}_{i}^{l}, \left\{\mathbf{h}_{k}^{l}: v_{k} \in \mathcal{N}_{i}\right\} \cup \left\{I\left(v_{i} \in \mathcal{V}_{\operatorname{tail}}\right) \mathbf{m}_{i}^{l} - I\left(v_{i} \in \mathcal{V}_{\operatorname{super}}\right) \mathbf{r}_{i}^{l}\right\}; \theta^{l+1}\right)$

(c) Matching identities

Datasets

Networks	#Nodes	#Edges	#Anchor links	#Tail links
Foursquare	5313	76972		
Twitter	5120	164919	1609	443
DBLP17	9086	51700	2000	
DBLP19	9325	47775	2832	975

Table 1: Dataset statistics.

Setup

- Tail nodes: degree ≤ 5
- Super head nodes: top-10% highest degree

[1] 2016, KDD. node2vec: Scalable feature learning for networks.

[2] 2016, IJCAI. Predict anchor links across social networks via an embedding approach.

[3] 2019, WWW. Semi-supervised entity alignment via knowledge graph embedding with awareness of degree difference.

[4] 2021, KDD. Balancing consistency and disparity in network alignment.

[5] 2021, KDD. Tail-GNN: Tail-node graph neural networks.

Baselines

- conventional representation learning
 - node2vec [1]
- UIL approaches
 - PALE [2], NeXtAlign [3], SEA [4]
- Degree-related embedding approaches
 - Tail-GNN [5]

Table 2: Overall performance. Best result appears in bold and the second best model is underlined except for ablation variants.

Dataset	Foursquare-Twitter				DBLP17-DBLP19			
Metric	Hits@1	Hits@10	Hits@30	MRR	Hits@1	Hits@10	Hits@30	MRR
node2vec	5.43	15.08	25.49	10.93	33.18	55.10	66.52	44.17
PALE	6.00	15.77	26.48	11.51	21.28	39.78	52.04	30.94
SEA	<u>6.93</u>	15.89	23.94	11.80	38.62	60.13	71.01	49.27
NeXtAlign	6.47	12.23	16.62	9.63	36.82	59.58	70.46	48.06
Tail-GNN	6.70	17.67	28.39	12.66	36.36	56.58	67.21	46.44
DegUIL	9.33	21.70	32.81	16.00	37.59	60.73	71.51	48.96
DegUIL_{w/o_AP}	8.11	19.39	30.39	14.30	36.26	59.29	70.32	47.67
DegUIL_{w/o_NR}	8.94	20.53	31.79	15.21	37.13	59.61	70.02	48.26

- DegUIL consistently outperforms other baselines.
- Degree-aware models perform better than traditional methods.
- DegUIL has a greater advantage in complex long-tailed datasets.

Table 2: Overall performance. Best result appears in bold and the second best model is underlined except for ablation variants.

Dataset	Foursquare-Twitter				DBLP17-DBLP19			
Metric	Hits@1	Hits@10	Hits@30	MRR	Hits@1	Hits@10	Hits@30	MRR
node2vec	5.43	15.08	25.49	10.93	33.18	55.10	66.52	44.17
PALE	6.00	15.77	26.48	11.51	21.28	39.78	52.04	30.94
SEA	<u>6.93</u>	15.89	23.94	11.80	38.62	60.13	<u>71.01</u>	49.27
NeXtAlign	6.47	12.23	16.62	9.63	36.82	59.58	70.46	48.06
Tail-GNN	6.70	17.67	28.39	12.66	36.36	56.58	67.21	46.44
DegUIL	9.33	21.70	32.81	16.00	37.59	60.73	71.51	<u>48.96</u>
DegUIL_{w/o_AP}	8.11	19.39	30.39	14.30	36.26	59.29	70.32	47.67
DegUIL_{w/o_NR}	8.94	20.53	31.79	15.21	37.13	59.61	70.02	48.26

- DegUIL consistently outperforms other baselines.
- Degree-aware models perform better than traditional methods.
- DegUIL has a greater advantage in complex long-tailed datasets.

Table 2: Overall performance. Best result appears in bold and the second best model is underlined except for ablation variants.

Dataset	Foursquare-Twitter				DBLP17-DBLP19				
Metric	Hits@1	Hits@10	Hits@30	MRR	Hits@1	Hits@10	Hits@30	MRR	
node2vec	5.43	15.08	25.49	10.93	33.18	55.10	66.52	44.17	
PALE	6.00	15.77	26.48	11.51	21.28	39.78	52.04	30.94	
SEA	<u>6.93</u>	15.89	23.94	11.80	38.62	60.13	71.01	49.27	
NeXtAlign	6.47	12.23	16.62	9.63	36.82	59.58	70.46	48.06	
Tail-GNN	6.70	17.67	28.39	12.66	36.36	56.58	67.21	46.44	
DegUIL	9.33	21.70	32.81	16.00	<u>37.59</u>	60.73	71.51	<u>48.96</u>	
DegUIL_{w/o_AP}	8.11	19.39	30.39	14.30	36.26	59.29	70.32	47.67	
DegUIL_{w/o_NR}	8.94	20.53	31.79	15.21	37.13	59.61	70.02	48.26	

- DegUIL consistently outperforms other baselines.
- Degree-aware models perform better than traditional methods.
- DegUIL has a greater advantage in complex long-tailed datasets.

Table 2: Overall performance. Best result appears in bold and the second best model is underlined except for ablation variants.

Dataset	Foursquare-Twitter				DBLP17-DBLP19				
Metric	Hits@1	Hits@10	Hits@30	MRR	Hits@1	Hits@10	Hits@30	MRR	
node2vec	5.43	15.08	25.49	10.93	33.18	55.10	66.52	44.17	
PALE	6.00	15.77	26.48	11.51	21.28	39.78	52.04	30.94	
\mathbf{SEA}	<u>6.93</u>	15.89	23.94	11.80	38.62	60.13	<u>71.01</u>	49.27	
NeXtAlign	6.47	12.23	16.62	9.63	36.82	59.58	70.46	48.06	
Tail-GNN	6.70	17.67	28.39	12.66	36.36	56.58	67.21	46.44	
DegUIL	9.33	21.70	32.81	16.00	<u>37.59</u>	60.73	71.51	<u>48.96</u>	
DegUIL_{w/o_AP}	8.11	19.39	30.39	14.30	36.26	59.29	70.32	47.67	
DegUIL_{w/o_NR}	8.94	20.53	31.79	15.21	37.13	59.61	70.02	48.26	

- DegUIL consistently outperforms other baselines.
- Degree-aware models perform better than traditional methods.
- DegUIL has a greater advantage in complex long-tailed datasets.

Table 2: Overall performance. Best result appears in bold and the second best model is underlined except for ablation variants.

Dataset	Foursquare-Twitter				DBLP17-DBLP19			
Metric	Hits@1	Hits@10	Hits@30	MRR	Hits@1	Hits@10	Hits@30	MRR
node2vec	5.43	15.08	25.49	10.93	33.18	55.10	66.52	44.17
PALE	6.00	15.77	26.48	11.51	21.28	39.78	52.04	30.94
SEA	<u>6.93</u>	15.89	23.94	11.80	38.62	60.13	<u>71.01</u>	49.27
NeXtAlign	6.47	12.23	16.62	9.63	36.82	59.58	70.46	48.06
Tail-GNN	6.70	17.67	28.39	12.66	36.36	56.58	67.21	46.44
DegUIL	9.33	21.70	32.81	16.00	<u>37.59</u>	60.73	71.51	<u>48.96</u>
DegUIL_{w/o_AP}	8.11	19.39	30.39	14.30	36.26	59.29	70.32	47.67
DegUIL_{w/o_NR}	8.94	20.53	31.79	15.21	37.13	59.61	70.02	48.26

- No absent neighborhood predictor (w/o AP): impairs the performance
- No noisy neighborhood remover (w/o NR): hurts the performance
- the gain of AP is more significant than that of NR.

Evaluation by degree

Fig. 4: MRR results by degrees.

- Low-degree nodes and super high-degree nodes perform worse than those normal nodes
- DegUIL outperforms PALE across all degree groups, validating its effectiveness in handling long-tail issues.

Conclusions

- performance bottlenecks: tail nodes, super head nodes
- Long-tailed UIL with GNNs
- > Algorithm: DegUIL
 - Degree-aware model
 - Training two modules to correct the neighborhood bias without additional attributes
 - learning high-quality node embeddings for tail nodes' alignment
- Evaluations
 - significant advantages in dealing with complex networks

Thanks!